Participants will evaluate existing instructional activities and technology projects, making revisions to enhance or transform them through the four stages of the SAMR (Substitution, Augmentation, Modification, Redefinition) Model, Bloom’s Taxonomy, TPAK, and others.
Redesigning Instruction with the SAMR Model
IT 270 - 5 Hrs. Wed. 8/26/15

• Contact
 ▫ Helen Rubin, Technology Specialist
 ▫ Web Resources
IT 270 Redesigning Instruction with the SAMR Model
Agenda – August 2015-2016

1. SAMR
 ▫ Is it a ladder or a pool?
2. Technology Standards
3. Bloom’s
4. TPAK
5. SAMR explained by Students
6. SAMR with APP examples
7. SAMR Projects on Web
 ▫ Directions for SAMR Project
 ▫ 5th Grade Student Light Project SAMR Project
 ▫ 3rd Grade Student Geography Project
 ▫ 4th Grade Student SS Project - Tourism
8. Create a web page with SAMR Project

5 minute short breaks or 2 (15 minute breaks)
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change
Redefinition
Modification
Augmentation
Substitution
"Don't tell me the sky's the limit when there are footprints on the moon."

~Paul Brandt
Technology Standard 8.1

2014
A. Technology Operations and Concepts
B. Creativity and Innovation
C. Communication and Collaboration
D. Digital Citizenship
E. Research and Information Fluency
F. Critical thinking, problem solving, and decision making

2009
A. Technology Operations and Concepts
B. Creativity and Innovation
C. Communication and Collaboration
D. Digital Citizenship
E. Research and Information Fluency
F. Critical thinking, problem solving, and decision making

The same strands exist but with different language and skills!
Technology Standard 8.2

2014

A. The Nature of Technology: Creativity and Innovation
B. Technology and Society
C. Technology Education, Engineering Design, and Computational Thinking
D. Abilities for a Technological World
E. Computational Thinking: Programming

2009

A. Nature of Technology: Creativity and Innovation
B. Design: Critical Thinking, Problem Solving, and Decision Making
C. Technological Citizenship, Ethics, and Society
D. Research and Information Fluency
E. Communication and Collaboration
F. Resources for a technological World
G. The Designed World
Bloom’s Digital Taxonomy

<table>
<thead>
<tr>
<th>Bloom’s taxonomy</th>
<th>Bloom’s modified taxonomy</th>
<th>Bloom’s extended digital taxonomy</th>
<th>Functional Levels</th>
<th>Activities with digital tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td>Remembering</td>
<td>Doing</td>
<td>Recognizing, listing, describing, identifying, retrieving, naming, locating, finding</td>
<td>Bullet pointing, highlighting, bookmarking, group networking, shared bookmarking, searching</td>
</tr>
<tr>
<td>Comprehension</td>
<td>Understanding</td>
<td>Connecting</td>
<td>Interpreting, summarizing, inferring, paraphrasing, classifying, comparing, explaining, exemplifying</td>
<td>Boolean searches, advanced searches, blog journaling, tweeting, categorizing, tagging, commenting, annotating, subscribing</td>
</tr>
<tr>
<td>Application</td>
<td>Applying</td>
<td>Applying</td>
<td>Implementing, carrying out, using, executing</td>
<td>Running, loading, playing, operating, uploading, sharing with group, editing</td>
</tr>
<tr>
<td>Analysis</td>
<td>Analyzing</td>
<td>Conceptualizing</td>
<td>Comparing, organising, deconstructing, attributing, outlining, finding, structuring, integrating</td>
<td>Hacking, mashing, linking, validating, reverse engineering, cracking</td>
</tr>
<tr>
<td>Synthesis</td>
<td>Evaluating</td>
<td>Evaluating</td>
<td>Checking, hypothesising, critiquing, experimenting, judging, testing, detecting, monitoring</td>
<td>Blog commenting, reviewing, posting, moderating, collaborating, refactoring, testing</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Creating</td>
<td>Creating</td>
<td>Designing, constructing, planning, producing, inventing, devising, making</td>
<td>Programming, filming, animating, blogging, video blogging, mixing, re-mixing, wiki-ing, videocasting, podcasting, directing</td>
</tr>
<tr>
<td>Bloom’s taxonomy</td>
<td>Bloom’s modified taxonomy</td>
<td>Bloom’s extended digital taxonomy</td>
<td>Functional Levels</td>
<td>Activities with digital tools</td>
</tr>
<tr>
<td>Knowledge</td>
<td>Remembering</td>
<td>Doing</td>
<td>Recognizing, listing, describing, identifying, retrieving, naming, locating, finding</td>
<td>Bullet pointing, highlighting, bookmarking, group networking, shared bookmarking, searching</td>
</tr>
<tr>
<td>Comprehension</td>
<td>Understanding</td>
<td>Connecting</td>
<td>Interpreting, summarizing, inferring, paraphrasing, classifying, comparing, explaining, exemplifying</td>
<td>Boolean searches, advanced searches, blog journaling, tweeting, categorizing, tagging, commenting, annotating, subscribing</td>
</tr>
<tr>
<td>Application</td>
<td>Applying</td>
<td>Applying</td>
<td>Implementing, carrying out, using, executing</td>
<td>Running, loading, playing, operating, uploading, sharing with group, editing</td>
</tr>
<tr>
<td>Analysis</td>
<td>Analyzing</td>
<td>Conceptualizing</td>
<td>Comparing, organising, deconstructing, attributing, outlining, finding, structuring, integrating</td>
<td>Hacking, mashing, linking, validating, reverse engineering, cracking</td>
</tr>
<tr>
<td>Synthesis</td>
<td>Evaluating</td>
<td>Evaluating</td>
<td>Checking, hypothesising, critiquing, experimenting, judging, testing, detecting, monitoring</td>
<td>Blog commenting, reviewing, posting, moderating, collaborating, refactoring, testing</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Creating</td>
<td>Creating</td>
<td>Designing, constructing, planning, producing, inventing, devising, making</td>
<td>Programming, filming, animating, blogging, video blogging, mixing, re-mixing, wiki-ing, videocasting, podcasting, directing</td>
</tr>
<tr>
<td>Bloom’s taxonomy</td>
<td>Bloom’s modified taxonomy</td>
<td>Bloom’s extended digital taxonomy</td>
<td>Functional Levels</td>
<td>Activities with digital tools</td>
</tr>
<tr>
<td>Knowledge</td>
<td>Remembering</td>
<td>Doing</td>
<td>Recognizing, listing, describing, identifying, retrieving, naming, locating, finding</td>
<td>Bullet pointing, highlighting, bookmarking, group networking, shared bookmarking, searching</td>
</tr>
<tr>
<td>Comprehension</td>
<td>Understanding</td>
<td>Connecting</td>
<td>Interpreting, summarizing, inferring, paraphrasing, classifying, comparing, explaining, exemplifying</td>
<td>Boolean searches, advanced searches, blog journaling, tweeting, categorizing, tagging, commenting, annotating, subscribing</td>
</tr>
<tr>
<td>Application</td>
<td>Applying</td>
<td>Applying</td>
<td>Implementing, carrying out, using, executing</td>
<td>Running, loading, playing, operating, uploading, sharing with group, editing</td>
</tr>
<tr>
<td>Analysis</td>
<td>Analyzing</td>
<td>Conceptualizing</td>
<td>Comparing, organising, deconstructing, attributing, outlining, finding, structuring, integrating</td>
<td>Hacking, mashing, linking, validating, reverse engineering, cracking</td>
</tr>
<tr>
<td>Synthesis</td>
<td>Evaluating</td>
<td>Evaluating</td>
<td>Checking, hypothesising, critiquing, experimenting, judging, testing, detecting, monitoring</td>
<td>Blog commenting, reviewing, posting, moderating, collaborating, refactoring, testing</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Creating</td>
<td>Creating</td>
<td>Designing, constructing, planning, producing, inventing, devising, making</td>
<td>Programming, filming, animating, blogging, video blogging, mixing, re-mixing, wiki-ing, videocasting, podcasting, directing</td>
</tr>
</tbody>
</table>
TPACK is a framework. Technology is not the focus of the activity, instead it supports learning in other content areas creating authentic learning experiences. Pedagogy, content knowledge and technology come together to develop a deeper understanding.
Classroom Application Document (CAD)

- CAD documents use the TPACK framework

THE DESIGN

Technological Pedagogical Content Knowledge (TPACK) is used as the framework of the documents. Technology is not the focus of the activity. The objective is to have technology support learning in other content areas creating authentic learning experiences. Pedagogy, content and technology come together to develop a deeper understanding.

<table>
<thead>
<tr>
<th>Legend</th>
<th>Symbols are used as a quick reference indicating additional resources have been identified. Additional information to locate resource(s) is provided on a supplemental page.</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Clock]</td>
<td>Time Tips That Transform Practice</td>
</tr>
<tr>
<td>![Folder]</td>
<td>Supporting Research and Resources</td>
</tr>
<tr>
<td>![Person]</td>
<td>Professional Development and/or Classroom Resources</td>
</tr>
<tr>
<td>![Lecture Hall]</td>
<td>Multiple Means of Representation</td>
</tr>
<tr>
<td>![Book]</td>
<td>Lessons</td>
</tr>
<tr>
<td>![Technology]</td>
<td>Multiple Means of Actions and Expressions</td>
</tr>
<tr>
<td>![Technology]</td>
<td>Technology Resources</td>
</tr>
<tr>
<td>![Technology]</td>
<td>Multiple Means of Engagement</td>
</tr>
</tbody>
</table>

Technology CPI

The Content or Cumulative Process Indicator contains two parts.

1. A Technology CPI is identified which is applicable to the activity.

Content Area CPI

2. Additional content standards have been identified which are applicable to the activity as it is designed.

Substitutions may be used in the activity replacing the focus to make relevant connections to alternative content areas.

Activity

The activity is the central focus occurring in the overlapping section of the TPACK framework.

Instructional Design Ideas

Identified collaborative opportunities, research based pedagogy and time tips to support implementation. There are many resources designed to perform the same task, there is not a requirement to use these.

Technology Options

New resources continue to emerge; the list of identified resources is representative of free options available to support implementation. There are many resources designed to perform the same task, there is not a requirement to use these.

Tech Tip: Tips to improve performance which can be used personally and/or turn-keyed to students.
Strand A: Technology Operations and Concepts

Rationale: Technology is used personally and professionally to research, communicate, create and store information. Demonstrating a sound understanding of technology concepts, systems and operations supports appropriate and effective use.

Instructional Design Ideas:
- Interdisciplinary Learning: Content area standards are developed while cultivating relevant technology applications and skills.
- Multiple Means of Representation: UDL
 - Distribute assignment direction and links to complete samples for reference by sharing the document created to print.
 - Documenting with images increases access for absent learners and clarification during review
 - Creates opportunity for all learners to review observations increasing accuracy

Content Area CPI
Science 3PS2-4
Define a simple design problem that can be solved by applying scientific ideas about magnets.

CCSS.ELA-LITERACY.L.5.1.D
Recognize and correct inappropriate shifts in verb tense.

CCSS.ELA-LITERACY.W.5.1.A
Introduce a topic or text clearly, state an opinion, and create an organizational structure in which ideas are logically grouped to support the writer’s purpose.

Activity
Develop a lab report documenting a science activity. Insert an image recording the results as evidence and formulate an explanation.

Technology Options
- CAST Science Writer: structure to scaffold support in developing the lab report and text to speech is embedded for easy access
- Cell phone or iPad to capture images
- Scanner to convert printed image or sketch to digital for content variations

Microsoft Word APP for android tablets
NeoOffice: Office applications for Mac OS X

Tech Tip: When copy and paste are not performing, use the control key strokes instead. First select the object (text, image, etc.) to be copied. Next hold the Ctrl key on the keyboard and “C” to copy or “V” to paste.

Legend
Symbols used are a quick reference to indicate additional resources have been included. Additional information to locate resource(s) are provided on a supplemental page.

Time Tips that Transform Practice
Supporting Research and Resources
Professional Development and/or Classroom Resources
Multiple Means of Representation
Lessons
Multiple Means of Actions and Expressions
Technology Resources
Multiple Means of Engagement

Next Generation Science – 3PS2-4 - http://www.nextgenscience.org/3d-forces-interactions
Technology 8.1.5.A.2 - http://www.state.nj.us/education/aps/ccsstech/

Multiple Means of Representation (UDL) - http://www.udlcenter.org/aboutudl/udlguidelines/principle1
Lost or forgotten homework is accessible from any device connected to the internet. Students can hear the text using screen readers assisting to close gaps. Communication with parents is increased when the class site is shared.

Retrofitting lessons to accommodate the unique needs of learners uses valuable time. Using technology to reduce barriers by sharing a digital file increases access while saving time.

BUY GREEN: Being an Eco-Friendly Consumer
Science Fair Lesson Plans: http://www.brainpop.com/educators/community/lesson-plan/planning-projects/ The lessons plans include links to games, interactive sites and extension activities.

CAST Science Writer: http://sciencewriter.cast.org/welcome/sessionid-64D97BE37DFEDADBDC4D17A377F1DPC
App Selection Criteria
from the APPtic App Lists for Education Website

Understanding: Apps that fit into this "understanding" stage provide opportunities for students to explain ideas or concepts. Understanding apps step away from the selection of a "right" answer and introduce a more open-ended format for students to summarise content and translate meaning.

Understanding Criteria

Remembering: Apps that fit into the "remembering" stage improve the user's ability to define terms, identify facts, and recall and locate information. Many educational apps fall into the "remembering" phase of learning. They ask users to select an answer out of a line-up, find matches, and sequence content or input answers.

Remembering Criteria

Applying: Apps that fit into the applying stage provide opportunities for students to demonstrate their ability to implement learned procedures and methods. They also highlight the ability to apply concepts in unfamiliar circumstances.

Applying Criteria

Analysing: Apps that fit into the "analysing" stage improve the user's ability to differentiate between the relevant and irrelevant, determine relationships, and recognise the organisation of content.

Analysing Criteria

Evaluating: Apps that fit into the "evaluating" stage improve the user's ability to judge material or methods based on criteria set by themselves or external sources. They help students judge content reliability, accuracy, quality, effectiveness, and reach informed decisions.

Evaluating Criteria

Creating: Apps that fit into the "creating" stage provide opportunities for students to generate ideas, design plans, and produce products.

Creating Criteria

Immersive Learning at the core of the wheel is the New Instructional Design

Simulations are the most effective pedagogy to develop graduate attributes and capabilities in learners, as well as address motivation. Please visit these Immersive Learning Resources which will help you design an engaging experience based immersive scenarios.

http://tinyurl.com/LMSimulations

The Padagogy Wheel V4.0

http://tinyurl.com/posterV4

How to use the Padagogy Wheel:
It's All About Grey-matter Grids

A methodology to get the best results with this teaching model

http://appitic.com

is a comprehensive online directory of apps for education, developed by Apple Distinguished Educators (ADEs) and is available in 19 languages. The website identifies 400 Apps by the Blooms Cognitive Domain Categories with 122 of the most popular apps individually linked from the Padagogy Wheel.

Developed by Allan Carrington
Designing Outcomes Adelaide SA
Email: allan@designingoutcomes.net

Standing on the Shoulders of Giants

This Taxonomy wheel, without the apps, was first discovered on the website of Paul Hopkins's educational consultancy website (nimweb.org.uk)
That wheel was produced by Sharon Arley and was an adaption of Katwoohi and Anderson's (2001) adaption of Bloom (1956). The idea to further adapt it for the pedagogy possibilities with mobile devices, in particular the iPad, For v0.5 and v0.1 I have to acknowledge the creative work of Kathy Schrock on her website Bloom's Apps. For the major revision that is v4.0 I have to thank the team of ADEs who created APPtic: the App Lists for Education Website.

The Padagogy Wheel by Allan Carrington is licensed under a Creative Commons Attribution 3.0 Unported License. Based on a work at http://tinyurl.com/boomsmash.
Apps in Education Poster

Apps classified by SAMR Model

Redefinition
Tech allows for the creation of new tasks, previously inconceivable
- iMovie
- Book Creator
- ShowMe
- Screen Chomp
- Toontastic
- Edu-creations
- Voicethread
- Sock Puppets
- Puppet Pals
- Nearpod

Modification
Tech allows for significant task redesign
- Flipboard
- Sketch
- Comic Strip
- Chrome
- Photosync
- Dual Browser
- Keynote
- QR Code Reader
- Dragon Dictation
- PDF Expert

Augmentation
Tech acts as a direct substitute, with some functional improvement
- Pages
- Google Search
- Haiku Deck
- Wikinodes
- Grammar Jammers
- The Elements
- Virtual Histories
- Qwiki
- Articles
- Draw on Screen

Substitution
Tech acts as a direct substitute, with no functional improvement
- Pages
- iBooks
- Symbaloo
- Popplet
- Simplemind
- Collage Creator
- Bamboo Paper
- Jumbo Calculator
- The Holy Bible
- Dictionary
SAMR
EXPLAINED BY
STUDENTS
SAMR WITH APP EXAMPLES
Have you ever wanted to fly? Well, maybe I just know who can help you. Piper McCloud! In this fictional story you will find new, awesome, and unbelievable powers like telekinesis, shrink and grow, heal, electricity, speed, strength, x-ray vision, genius, and so many others!

Piper McCloud was born with a unique ability to fly, but her parents did not want anyone else to know, so they did not want her to fly. One day Dr. Hellion came to teach her how to fly much better, but she would have to leave her beloved parents. If she stayed with her parents she would not get to fly; but if she went with Dr. Hellion she would miss her parents. Piper decided to go with Dr. Hellion to L.N.S.A.N.E., a place where abnormal things live. Here she met the students on level thirteen. One day Piper learned Dr. Hellion wanted everything to be normal.

I loved this book. It made me feel I could be courageous like Piper. How can they escape from Dr. Hellion's evil doings? Will they make it out with everyone in one piece, or will they all forget their powers and be normal like everyone else in the world? Read the book to see what happens!

— Homer Schrank
Substitution

- Tech acts as a direct tool substitute, **with no functional change**
- Computer technology is used to perform the same task as was done before the use of pc.
- Ie: Student print out worksheet, finish it, pass it in.
- **Enhancement**
Piper's mom did not like her to fly.
Augmentation

Tech acts as a direct tool substitute, with functional improvement

ie: Students take a test/quiz using Pearson

Enhancement
Interview with Piper:
Question 1

Piper, how does it feel to fly?

(Audio of Piper's response)
Modification

• Tech allows for significant task **redesign**

• ie: Student is asked to write an essay. An audio track is made of the essay using Voice Recorder adding musical soundtrack.

• **Transformation**
Redefinition

- Tech allows for the creation of new tasks, previously inconceivable.
- Ie: A classroom is ask to identify geometric shapes in the real world. Teams video shapes and subtopics. Teams then make an iMovie about geometric shapes and facetime and expert.
- *Transformation*
Technology acts as a direct tool substitute with no functional change.

Technology acts as a direct tool substitute with functional improvement.

Technology allows for significant task redesign.

Technology allows for the creation of new tasks, previously inconceivable.

Substitution
- Taking notes using iOS Notes
- Using Safari to research and collate information (select/copy)
- Create a Keynote presentation on the iPad
- Copy, paste and send a web address by email
- Open a PDF from an email to read the document
- Students email documents from Pages to Teacher

Augmentation
- Using Evernote to Categorise and Tag class notes
- Bookmark and Share sources using the share button
- Demonstrate understanding using Show Me Everything
- Send a ‘Meeting Request’ for deadline reminders
- Dictionary / Search Document
- Student submit to submissions folder from Pages

Modification
- Using SlingNote to curate online sources
- Download and annotate image using Skitch
- Combine audio, video and text notes in iMovie Presentation
- Create and Scan a QR Code
- Annotating digital documents in GoodReader and iBooks
- Managing files from Server and Google Drive using GoodReader

Redefinition
- Sharing notebooks and collaborating using Evernote
- Mind mapping concepts visually
- NearPod Presentation
- Augmented Reality (AR) using Aurasma
- Creating an interactive document using iBooks Author
- Allowing peer-feedback and collaboration using a Wiki
Transformation

- **Redefinition**
 - Tech allows for creation of new tasks, previously inconceivable

- **Modification**
 - Tech allows for significant task design

- **Augmentation**
 - Tech acts as direct tool substitute, with functional improvement

- **Substitution**
 - Tech acts as direct tool substitute, with no functional change

Enhancement

- Integrated with workgroup and content management software
 - Collaborate with experts about the design and results of lab work. From feedback make changes to lab design. Use online tools to display the results. Blog and get others to repeat the lab worldwide. Compare results.

- Integrated with email, spreadsheets, graphing packages
 - Collaborate with experts about the design and results of lab work. From feedback make changes to lab design.

- Basic functions (e.g., cut and paste, spellchecking) used
 - Type up lab report, use spell check, grammar check, hand in.

- Word processor used like a typewriter
 - Word process lab report, print, and hand in.
DO YOU KNOW
SAMR
Technology acts as a direct tool \textit{substitute} with \textbf{no functional change}.
Technology acts as a **direct** tool substitute with functional improvement
Technology allows for significant task redesign.
Technology allows for the creation of new tasks, previously inconceivable.
Agenda

1. SAMR
 - Is it a ladder or a pool?
2. Technology Standards
3. Bloom’s
4. TPAK
5. SAMR explained by Students
6. SAMR with APP examples
7. SAMR Projects on Web
 - Directions for SAMR Project
 - 5th Grade Student Light Project SAMR Project
 - 3rd Grade Student Geography Project
 - 4th Grade Student SS Project - Tourism
8. Create a web page with SAMR Project
Create a web page with SAMR Project

Web Resources
Supportive Resources

- Software and hardware onsite
- Identify community access points - Library, internet cafe, etc.
- Free Resources available online or to be installed and used offline
 - Treasure Chest of Resources - http://www.capemaytech.net/ettc/treasurechest/
- Online storage
- Classroom Application Documents
SAMR Model

- An Applied Introduction
 - Ruben R. Puentedura, Ph.D.
- Transforming Educational Technology Integration
- Elementary SAMR Keynote
- The iPad in Practice:
 - Designing Flows and Ladders in the Classroom
SAMR Model

- SAMR Model Explained for Teachers
- Dr. Ruben Puentedura-.pdf
- Kathy Schrock
 - Tim Holt Video- SAMR Modification – why use it
 - Substitution
 - Augmentation
 - Modification
 - Redefinition
4 Stages to Integration

1. **Substitution**: technology acts as a direct tool substitute with no functional change.

2. **Augmentation**: technology acts as a direct tool substitute with functional improvement.

3. **Modification**: technology allows for significant task redesign.

4. **Redefinition**: technology allows for the creation of new tasks, previously inconceivable.

References

- Cape May County ETTC Treasure Chest
 http://www.capemaytech.net/ettc/treasurechest

- CAST. “Until Learning Has No Limits.” CAST.org. n.d.
 Center for Applied Special Technology.
 http://www.cast.org/.

- New Jersey Core Content Standards
 http://www.state.nj.us/education/cccs/2014/tech/

- Youtube. UDL at a Glance.
 https://www.youtube.com/watch?t=15&v=bDvKnY0g6e4

State Educational Technology Directors Association
Resource Activity

8.1 - Digital Citizenship
Digital Passport from Common Sense - https://www.digitalpassport.org/educator-registration#registration-title

8.2 - Coding & Collaboration
Code.org - professional development, interactives and lesson plan ideas - http://code.org/
GameSalad - works on a variety of platforms. No coding required - https://help.gamesalad.com/hc/en-us/articles/201824316
International Projects or Partners Place (iPoPP) - http://www.globalschoolnet.org/ipopp/index.html

8.1 & 8.2 - Productivity & Collaboration
Google Drive - https://tools.google.com/dlpage/drive
ooVoo - synchronous video chat or video recording - http://www.oovoo.com/

8.1 & 8.2 - Screenreader

Develop a classroom activity and identify an relevant technology standard. Identify a resource which could be used supporting learning and prepare to share.
The SAMR Ladder: Questions and Transitions

Redefinition
Tech allows for the creation of new tasks, previously inconceivable

- What is the new task?
- Will it replace or supplement older tasks?
- How is the learning task being made uniquely possible through the new technology?
- How does it improve the learning design and student outcomes?

Examples:
- Create and post a video online - shared by a wide audience
- Create a digital, multimedia book to share online
- Interacting digitally in a global context - video conferences
- Creating digital workflows using multiple technologies
- Creating a multimedia, digital record of learning experiences

Modification
Tech allows for significant task redesign

- How has the original learning task been modified?
- How does the modification depend upon the new technology?
- How does this modification improve the learning design and outcomes of the students?

Examples:
- Use Google docs for collaborative work with fellow students
- Share ideas with other students in the class using Skype
- Using technology to present information differently e.g in a comic format, a digital poster, a mindmap, movie, presentations etc (changing or modifying the product)